
Created on May 12, 2008 12:49 Page 1
Copyright TopCoder, Inc. 2008

Software Documentation : Distance Generator (Java)

This page last changed on May 12, 2008 by adamselene.

1. Scope

1.1 Overview

The Distance Generator is a custom component for TopCoder's web site. The component will calculate
the distance between a member and a set of related members. The component will define at minimum
three distances to calculate - rating, geographical, and match overlap. The component is responsible for
calculating these distances, as well as weighting them to calculate an overall distance between the two
members. After calculation, the component must deliver the results in XML, to provide a data feed for a
user interface to display.

When calculation is performed, the component will retrieve a requested member, and a list of related
members. For the purposes of any single calculation request, these are the only members that exist. The
output of this component will be used in a graphical display, and the intention is to make each individual
display as visually appealing and informative as possible. For this reason, this component does not
calculate distance in the strict mathematical sense - the component does not define distance functions as
symmetrical, for instance.

1.2 Logic Requirements

1.2.1 Distance Calculation

Distance between two members is defined as a floating point value from zero to one, inclusive. Larger
values indicate further distance. Distances must always be calculated in a relative manner, to maximize
the distinction between related members. The component must support at minimum the following
calculations. Note that minimum and maximum functions mentioned below are local and only cover
the current list of related members. You do not need to calculate absolute or global minimums and
maximums.

1.2.1.1 Rating Distance

The component must support calculation of the distance between two members based on their
ratings. Members may have more than one rating (for instance, one member may be rated in design,
development, and algorithm competitions). The types of ratings available are: algorithm, development,
design, marathon, and high-school. Placeholders will be provided for studio and assembly, but there
will be no rating data available for these competitions. All rating data will provided by the data access
interface.

When comparing a member to another member, these rules should be followed:

From (A) To (B) Value Reason

Rated Member Unrated Member 1.0 A rated member is
equidistant to all
unrated members
of the type, with a
non-zero distance. To
maximize the effect
of this distance, it
will be considered the
maximum distance
(1.0).

Unrated Member Rated member B.rating / max(rating) An unrated member is
assumed to have a zero
rating for determining
the distance between

Created on May 12, 2008 12:49 Page 2
Copyright TopCoder, Inc. 2008

themselves and rated
members.

Unrated Member Unrated Member 0.0 An unrated member
is in the same state
as another unrated
member and may
be assumed to be
equidistant. The
distance between them
is assumed to be zero.

Rated Member Rated Member abs(A.rating -
B.rating) / max(rating)

This function produces
the relative distance
between two members.

In the data provided to the component a rating less than or equal to zero should be considered as
"unrated".

To compute the overall rating distance between one member and another member, the average (mean)
distance must be computed, based on the individual distances per rating. If all provided members are
unrated in a competition type, the distance should be dropped from the computation to prevent skewing
the mean.

1.2.1.2 Geographical Distance

The component must support calculation of the distance between two members geographically. The
geographic distance in uniform units will be provided by the data access interface. A geographical
distance of zero indicates no geographical distance between two members, and a distance less than zero
indicates an unknown geographical distance between the members.

From (A) To (B) Value Reason

Known Member Unknown Member Undefined The distance between
a known and unknown
member is undefined.

Unknown Member Known member Undefined The distance between
a known and unknown
member is undefined.

Unknown Member Unknown Member Undefined The distance between
unknown members
is undefined and the
distance should not be
included.

Known Member Known Member B.geoDistance /
max(geoDistance)

This function produces
the relative distance
between two members.
If max(geoDistance)
is zero, the function
should return zero, and
not undefined.

1.2.1.3 Match Overlap

The component must support calculation of the distance between two members based on the number of
shared matches. Note that this function is inverse (higher overlap indicates lower distance). Additionally,
there is no "unknown" value for this data - a member will share zero or more matches with another
member.

Created on May 12, 2008 12:49 Page 3
Copyright TopCoder, Inc. 2008

The recommended function for this calculation is 1 - ((B.overlap - min(overlap)) / max(overlap)). If
max(overlap) is zero the function should return 1 and not undefined.

1.2.2 Distance Aggregation

The consumer of the component must be able to specify which of the above distances to calculate per
request. When more than one type is specified, the distances must be averaged together. The component
must use a weighted average to compute the final distance. The weighting should default to equal weight,
but the consumer must be able to alter the weighting if desired.

For example, if the following distances were calculated with equal weighting:

Handle Rating Distance Geographical
Distance

Final Distance

AdamSelene 1.0 0.0 0.5

dok 0.5 0.0 0.25

mess 0.25 undefined undefined

If we were to give higher weighting to geographical distance, the final distances would decrease. Note
that any aggregate distance which includes an undefined distance will be undefined.

Unused weight must be re-distributed evenly. For example, if the default weightings are GEO=40,
OVR=40, RAT=20, if we only calculate GEO and OVR, we redistribute the 20 points evenly between the
other two weights - which is 40+10, or 50. Similarly, for OVR and RAT, we redistribute GEO to result in
60/40.

1.2.3 Data Access Interface

The data access interface for the component is provided. A default implementation is provided to
designers and developers as an attachment. The component must support pluggable data access
implementation, which may include updates to the default implementation provided. However, the
designer may not change the basic interfaces provided (MemberDataAccess or Member). Source files are
provided with the predefined interfaces and implementations. The designers do not need to document the
default implementation, nor are they required to include in it their UML diagrams.

1.2.4 Output

At minimum, the component must support the following interface for generating distances for a specific
member:

String generateDistance(long coder_id, EnumSet<DistanceType> distanceTypes,
EnumSet<CompetitionType> compTypes);

coder_id is the long, unique identifier for the coder to generate distances for. DistanceType is an
enumeration of the three required distance calculations described above. CompetitionType is an
enumeration of the competition types to generate data for (which is handled by the data access
interface).

1.2.4.1 Format

The method must return XML. An XSD for the XML output is attached. The first coder element in the
output must always be the requested member.

Any member with an undefined distance must not be included in the output.

1.2.4.2 Details

The elements in the XSD map as follows:

Created on May 12, 2008 12:49 Page 4
Copyright TopCoder, Inc. 2008

Element Content

coder_id Member.getId()

handle Member.getHandle()

rating Member.getMaxRating()

image Member.getImage()

distance The calculated distance or zero for the first
member.

overlap Member.getOverlap()

country Member.getCountry()

1.2.5 Thread Safety

The distance generator will be used in a web application environment; while instances will likely not be
shared across threads the component will be independently called by many threads. Distance generation
must not depend on static mutable data between instances.

1.3 Required Algorithms

The algorithms for distance calculation and aggregation must be clearly specified.

1.4 Example of the Software Usage

This component will provide the data for a graphical map of members related to a specific member, and
how "close" they are in certain terms.

1.5 Future Component Direction

Future versions will include more distance types - for instance the difference in volatility, the average
time to submit an algorithm problem, submission score similarity, and so forth.

2. Interface Requirements

2.1.1 Graphical User Interface Requirements

None.

2.1.2 External Interfaces

The component must support the interfaces and XSDs attached. A quick summary follows:

public interface DistanceGenerator {
String generateDistance(long coder_id, EnumSet<DistanceType> distanceTypes,
EnumSet<CompetitionType> compTypes);
}

public interface MemberDataAccess {
Member getMember(long id);
List<Member> getRelatedMembers(long id, EnumSet<CompetitionType> competitionTypes);
}

public enum DistanceType {
OVERLAP,
GEOGRAPHICAL,

Created on May 12, 2008 12:49 Page 5
Copyright TopCoder, Inc. 2008

RATING
}

public enum CompetitionType {
ALGORITHM,
DEVELOPMENT,
DESIGN,
STUDIO,
MARATHON,
ASSEMBLY,
HIGHSCHOOL
}

public class Member {
public String getHandle();
public String getImage();
public int getMaxRating();
public int getRating(CompetitionType type);
public long getId();
public int getGeographicalDistance();
public int getMatchOverlap();
public String getCountry();
}

2.1.3 Environment Requirements

• Development language: Java1.5
• Compile target: Java1.5 and Java 1.6

2.1.4 Package Structure

com.topcoder.web.tc.distance;
com.topcoder.web.tc.distance.data;

3. Software Requirements

3.1 Administration Requirements

3.1.1 What elements of the application need to be configurable?

No elements explicitly need to be configurable. The designer may include configuration at their discretion.

3.2 Technical Constraints

3.2.1 Are there particular frameworks or standards that are required?

None.

3.2.2 TopCoder Software Component Dependencies:

• Base Exception 2.0

The designer may choose to include additional catalog components at their discretion.

3.2.3 Third Party Component, Library, or Product Dependencies:

None.

3.2.4 QA Environment:

• Solaris 9

Created on May 12, 2008 12:49 Page 6
Copyright TopCoder, Inc. 2008

• RedHat Linux Enterprise 4
• Windows XP

3.3 Design Constraints

The component design and development solutions must adhere to the guidelines as outlined in the
TopCoder Software Component Guidelines.

3.4 Required Documentation

3.4.1 Design Documentation

• Use-Case Diagram
• Class Diagram
• Sequence Diagram
• Component Specification

3.4.2 Help / User Documentation

• Design documents must clearly define intended component usage in the 'Documentation' tab of TC
UML Tool.

