
Distance Generator 1.0 Component Specification

1. Design
The Distance Generator is a custom component for TopCoder's web site. The component
will calculate the distance between a member and a set of related members. The
component will define at minimum three distances to calculate - rating, geographical, and
match overlap. The component is responsible for calculating these distances, as well as
weighting them to calculate an overall distance between the two members. After
calculation, the component must deliver the results in XML, to provide a data feed for a
user interface to display.

When calculation is performed, the component will retrieve a requested member, and a
list of related members. For the purposes of any single calculation request, these are the
only members that exist. The output of this component will be used in a graphical display,
and the intention is to make each individual display as visually appealing and informative
as possible. For this reason, this component does not calculate distance in the strict
mathematical sense - the component does not define distance functions as symmetrical,
for instance.

1.1 Design Patterns
The strategy pattern is used to make IMemberDataAccess implementations pluggable to
the DefaultDistanceGenerator class, IDistanceCalculator implementations pluggable to
DefaultDistanceGenerator class and IDistanceGenerator implementations pluggable to
client code.

1.2 Industry Standards
XML

1.3 Required Algorithms
Distance between two members is defined as a floating point value from zero to one,
inclusive. Larger values indicate further distance. Distances must always be calculated in
a relative manner, to maximize the distinction between related members. The component
supports the following calculations. Note that minimum and maximum functions
mentioned below are local and only cover the member and its related members.

1.3.1 Rating Distance

The component supports calculation of the distance between two members based on
their ratings. Members may have more than one rating (for instance, one member may be
rated in design, development, and algorithm competitions). The types of ratings available
are: algorithm, development, design, marathon, and high-school. All rating data will
provided by the data access interface.

When comparing a member to another member, these rules should be followed:
From (A) To (B) Value Reason
Rated Member Unrated Member 1.0 A rated member is

equidistant to all
unrated members
of the type, with a
non-zero distance. To
maximize the effect of
this distance, it will be
considered the
maximum distance
(1.0).

Unrated
member

Rated member B.Rating/max(rating) An unrated member is
assumed to have a
zero rating for
determining the
distance between
themselves and rated
members.

Unrated
member

Unrated member 0.0 An unrated member
is in the same state
as another unrated
member and may
be assumed to be
equidistant. The
distance between them
is assumed to be zero.

Rated member Rated member abs(A.Rating –
B.Rating) / max(rating)

This function produces
the relative distance
between two
members.

Please note here that max(rating) here refers to the max rating of all members involved in
the calculation for a given type. In the data provided to the component a rating less than
or equal to zero should be considered as "unrated".

To compute the overall rating distance between one member and another member, the
average (mean) distance must be computed, based on the individual distances per
rating. If all provided members are unrated in a competition type, the distance should be
dropped from the computation to prevent skewing the mean. Note this applies to the
other two distance calculations too. Take a look at this example:

Suppose we have three members related with member X with three ratings:
X { -1, -1, -1 }
A { 1, 2, 3 }
B { 2, 3, 4 }
C { 3, 4, 5 }

max(rating1) = 3, max(rating2) = 4, max(rating3) = 5

distances() =
A { (1/3 + 2/4 + 3/5) / 3 }
B { (2/3 + 3/4 + 4/5) / 3 }
C { (3/3 + 4/4 + 5/5) / 3 }

1.3.2 Geographical Distance

 The component supports calculation of the distance between two members
 geographically. The geographic distance in uniform units will be provided by the data
 access interface. A geographical distance of zero indicates no geographical distance
 between two members, and a distance less than zero indicates an unknown geographical
 distance between the members.

From (A) To (B) Value Reason
Known Member Unknown Member Undefined The distance between

a known and unknown
member is undefined
and the
distance should not be

included.
Unknown
member

Known member Undefined The distance between
a known and unknown
member is undefined
and the
distance should not be
included.

Unknown
member

Unknown member Undefined The distance between
unknown members is
undefined and the
distance should not be
included.

Known member Known member B.GeoDistance /
max(GeoDistance)

This function produces
the relative distance
between two
members. If
max(GeoDistance) is
zero, the function
should return zero, and
not undefined.

 max(GeoDistance) is also calculated locally for all involved members, similar to
 max(Rating) as described in section 1.3.1.
1.3.3 Match Overlap

 The component supports calculation of the distance between two members based on
 the number of shared matches. Note that this function is inverse (higher overlap indicates
 lower distance). Additionally, there is no "unknown" value for this data - a member will
 share zero or more matches with another member.

 The recommended function for this calculation is 1-((B.MatchOverlap-min(overlap))/
 max(overlap)). If max(overlap) is zero the function should return 1 and not undefined.
1.3.4 Distance Aggregation
 The consumer of the component is able to specify which of the above distances to
 calculate per request. When more than one type is specified, the distances must be
 averaged together. The component uses a weighted average to compute the final
 distance. The weighting should default to equal weight, but the consumer must be able to
 alter the weighting if desired. For example, if the following distances were calculated with
 equal weighting:

Handle Rating Distance Geographical Distance Final Distance
AdamSelence 1.0 0.0 0.5
dok 0.5 0.0 0.25
mess 0.25 Undefined Undefined

 If we were to give higher weighting to geographical distance, the final distances would
 decrease. Note that any aggregate distance which includes an undefined distance will be
 undefined.

 Unused weight must be re-distributed evenly. For example, if the default weightings are
 GEO=40, OVR=40, RAT=20, if we only calculate GEO and OVR, we redistribute the 20
 points evenly between the other two weights - which is 40+10, or 50. Similarly, for OVR
 and RAT, we redistribute GEO to result in 60/40.

 Since weights can be float numbers, developers should be careful of the precision issue.
 A small correction number should be used when comparing float numbers, for example:

 abs(100 – sum_of_weights) < eps where eps is a very small float number.
1.3.5 XML Output
 The component must return an XML string conforming to the provided XSD schema. The
 first coder element in the output must always be the requested member and any member
 with an undefined distance must not be included in the output.

 The elements in the XSD map as follows:

Element Content
coder_id Member.Id
Handle Member.Handle
rating Member.MaxRating
image Member.Image
distance The calculated distance or 0 for the first

member.
overlap Member.MatchOverlap
country Member.Country

1.4 Component Class Overview
 IDistanceGenerator interface:

This interface defines the contract to calculate the various distances. This component
provides 3 implementations to support 3 kinds of distance calculations: rating distance,
geographical distance and match overlap distance. Implementations of this interface will
be plugged to IDistanceGenerator implementations and will not be used directly.
Implementations of this interface should be thread safe.

IXmlGenerator interface:
This interface defines the contract to generate xml string for the calculated distance data.
Implementations of this interface should be thread safe.

 DistanceTypes enum:
This enumeration contains the basic distances between users. This enum must be
marked with the [Flags] attribute.
Enums are always thread safe.

 CompetitionTypes enum:
This enumeration contains the various competition types available for ratings and
competition overlap. This enum must be marked with the [Flags] attribute.
Enums are always thread safe.

 IDistanceCalculator interface:
 This interface defines the contract to calculate the various distances. Currently 3 kinds of
 distance calculation are supported: rating distance, geographical distance and match
 overlap distance. This interface is defined so calculating formulas could be easily
 replaced or plugged in.
 Implementations of this interface should be thread safe.

 DefaultDistanceGenerator class:

This class is the default implementation of the IDistanceGenerator interface. It uses
pluggable member data access instance distance calculator and xml generator to
accomplish the task. The calculation formula could be easily replaced or plugged in by
providing new IDistanceCalculator implementations, which is a nice feature since this

way we don't need to modify existing code in case of such requirements.
 This class is thread safe since it's immutable.

 RatingDistanceCalculator class:

This class is the implementation of the IDistanceCalculator interface that calculates rating
distance. It implements the default distance calculation formula/algorithm as stated in
component specification algorithm section.
This class is thread safe since it's immutable.

 GeographicalDistanceCalculator class:

This class is the implementation of the IDistanceCalculator interface that calculates
geographical distance. It implements the default geographical calculation
formula/algorithm as stated in component specification algorithm section.
This class is thread safe since it's immutable.

OverlapDistanceCalculator class:
This class is the implementation of the IDistanceCalculator interface that calculates
match overlap distance. It implements the default match overlap calculation
formula/algorithm as stated in component specification algorithm section.
This class is thread safe since it's immutable.

DefaultXmlGenerator class:
The default implementation of the IXmlGenerator interface. It generates xml string that
conforms to the defined XSD.
This class is thread safe since it's immutable.

 IMemberDataAccess interface:
 The data access interface for retrieving member data. It defines methods to retrieve a
 specific member by id and retrieve a members related members by given id and
 competition type.
 Implementations of this interface should be thread safe.

Member class:
This class is an immutable data transport object that holds all data necessary to calculate

 the required distances between two members. Members unrated in a particular
 competition type are considered to have rating zero.

This class is thread safe since it's immutable.

1.5 Component Exception Definitions
 DistanceGenerationException:

This exception is used to represent errors that might occur during generation of distance.
For example: failed to retrieve data. This exception is thrown by methods in
IDistanceGenerator interface and its implementations.

MemberDataAccessException:
This exception is thrown by IMemberDataAccess implementations, when errors occur in

 the member retrieval methods of the implementations.

1.6 Thread Safety
This component is completely thread safe as all classes in this component are immutable
, and all future implementations of the defined interfaces are required to be thread safe.

2. Environment Requirements

2.1 Environment
Development language: #

Compile Target: .NET Framework 2.0 and 3.0

2.2 TopCoder Software Components
Configuration API 1.0 is used to pass in configuration for this component.

Object Factory Configuration API Plugin 1.1 is used to create objects from
Configuration API style configuration.

NOTE: The default location for TopCoder Software component jars
is../lib/tcs/COMPONENT_NAME/COMPONENT_VERSION relative to the component
installation. Setting the tcs_libdir property in topcoder_global.properties will overwrite
this default location.

2.3 Third Party Components
None.

NOTE: The default location for 3rd party packages is ../lib relative to this component
installation. Setting the ext_libdir property in topcoder_global.properties will overwrite
this default location.

3. Installation and Configuration

3.1 Package Name
TopCoder.Web.Distance
TopCoder.Web.Distance.DistanceGenerators
TopCoder.Web.Distance.DistanceCalculators
TopCoder.Web.Distance.XmlGenerators
TopCoder.Web.Distance.Data

3.2 Configuration Parameters
 Configuration for DefaultDistanceGenerator class:

Parameter Name Parameter Description Parameter Value
dataAccessKey The key used to create the

IMemberDataAccess instance.
Required.

Non-null and non-empty string.

xmlGeneratorKey The key used to create the
IXmlGenerator instance.
Required

Non-null and non-empty string.

calculatorKeys This should be a string array in
which each element has format
distance_type:calculator_key,
while distance_type is a valid
enum name as defined in
DistanceTypes enum, and
calculator_key is a valid key
used to create the
IDistanceCalculator instance.
Required.

Should be an array containing
elements with the defined
format.

weights This should be a string array in
which each element has format
distance_type:weight, while
distance_type is a valid enum
name as defined in
DistanceTypes enum, and
weight is a positive float
number. Optional. If not present

If present must be an array
containing elements with the
defined format. And the sum of
all weights should equal to 100.
The elements cannot contain
duplicate names of distance
types.

we'll use the default equal
weight.

objectDefChild The child IConfiguration object
containing object definitions for
the above configured keys.
Required

Must be a valid IConfiguration
child that contains definition to
create IMemberDataAccess
and IDistanceCalculator
instances based on configured
key.

3.3 Dependencies Configuration
All dependent components should be properly configured before this component is used.
Please consult the documents of the dependent components for configuration details.

4. Usage Notes

4.1 Required steps to test the component
 Extract the component distribution.

Set up the component environment.

Execute ‘ant test’ within the directory that the distribution was extracted to.

4.2 Required steps to use the component
Nothing special. Just set up the configuration and use it.

4.3 Demo
The following section demonstrates how to set up the configuration and create a
DefaultDistanceGenerator instance:

// set up the configuration object used by DefaultD istanceGenerator class
Iconfiguration config = new DefaultConfiguration(“r oot”);
config.SetSimpleAttribute(“dataAccessKey”, “fileBas edDataAccess”);
config.SetSimpleAttribute(“xmlGeneratorKey”, “myXml Generator”);
string[] calculatorKeys = new string[] {“Rating:rCa l”,”Overlap:oCal”};
config.SetSimpleAttribute(“calculatorKey”, calculat orKeys);
// and the config should contain the object definit ions, suppose objectDefChild is
// defined
config.AddChild(objectDefChild);

// create a DefaultDistanceGenerator instance
IDistanceGenerator generator = new DefaultDistanceG enerator(config);

// we may also create the generator without the usa ge of any configuration
generator = new DefaultDistanceGenerator(memberData Access, distanceCalculator);

Since we now have the IDistanceGenerator instance created, we can start using it.

// generate with default weights
// we suppose we use the data in section 1.3.1, X i s the member with id 1, and the
// 3 ratings are for Algorithm, Design and Developm ent respectively
string result = generator.GenerateDistanceXml(1, Di stanceTypes.Rating,
(CompetitionTypes) 3);

// we'll expect an XML string looks like the follow ing(note, only care the handle
// and distance values, the other values are mocks
<coder>
 <coder_id>1</coder_id>
 <handle>X</handle>
 <rating>-1</rating>
 
 <distance>0</distance>

 <overlap>1</overlap>
 <country>US</country>
</coder>
<coder>
 <coder_id>2</coder_id>
 <handle>A</handle>
 <rating>3</rating>
 
 <distance>0.48</distance>
 <overlap>2</overlap>
 <country>UK</country>
</coder>
<coder>
 <coder_id>3</coder_id>
 <handle>B</handle>
 <rating>4</rating>
 
 <distance>0.74</distance>
 <overlap>3</overlap>
 <country>CN</country>
</coder>
<coder>
 <coder_id>4</coder_id>
 <handle>C</handle>
 <rating>5</rating>
 
 <distance>1</distance>
 <overlap>4</overlap>
 <country>JP</country>
</coder>

// usage of the other overload, suppose we are usin g the sample data in CS 1.3.4
// we can expect the final distance to be 0.4, 0.2 and undefined for AdamSelence, dok
// and mess respectively, the xml is not shown here since it’s similar to the above
// one
IDictionary<DistanceTypes,float> weights = new Dict ionary<DistanceTypes,float>();
weights.Add(DistanceTypes.Rating, 40);
weights.Add(DistanceTypes.Country, 60);
result = generator.GenerateDistanceXml(1, DistanceT ypes.Rating, (CompetitionTypes) 3,
weights);

5. Future Enhancements
Future versions will include more distance types - for instance the difference in volatility,
the average time to submit an algorithm problem, submission score similarity, and so
forth.

